深度学习的成功以巨大的计算和能源成本,而训练大规模过度参数的神经网络的可伸缩性正成为AI进步的真正障碍。尽管传统反向传播通过梯度不错的传统反向传播的流行和低成本,但在理论和实践中,SGD在非凸面设置中具有高度的收敛速度。为了减轻这一成本,最近的工作提议采用替代性(牛顿型)培训方法,但收敛速度更快,尽管其每题成本更高。对于具有$ m = \ mathrm {poly}(n)$参数的典型神经网络,$ n $ datapoints in $ \ mathbb {r}^d $ of $ n $ datapoints的输入批次, Weinstein,ITCS'2021]需要$ \ sim mnd + n^3 $每次迭代。在本文中,我们提出了一种新颖的培训方法,它仅需要$ m^{1- \ alpha} n d + n^3 $摊销时间在同一过度叠加机制中,其中$ \ alpha \ in(0.01,1)$是某些固定常数。此方法依赖于神经网络的新替代视图,作为一组二进制搜索树,每个迭代都对应于修改树中节点的一小部分。我们认为,这种观点将在DNN的设计和分析中进一步应用。
translated by 谷歌翻译
大规模监督学习中的共同挑战是如何利用新的增量数据到预先训练的模型,而无需从头开始重新培训模型。受到这个问题的激励,我们重新审视动态最小二乘回归(LSR)的规范问题,其中目标是通过增量训练数据学习线性模型。在此设置,数据和标签$(\ mathbf {a} ^ {(t)},\ mathbf {b} ^ {(t)})\ in \ mathbb {r} ^ {t \ times d} \ times \ MathBB {R} ^ T $以在线方式发展($ t \ gg d $),目标是有效地将(近似)解决方案保持为$ \ min _ {\ mathbf {x} ^ {(t)}} \ | \ mathbf {a} ^ {(t)} \ mathbf {x} ^ {(t)} - \ mathbf {b} ^ {(t)} \ | \ | \ |在$中的所有$ t \。我们的主要结果是一种动态数据结构,它将任意小的恒定近似解,与摊销更新时间$ o(d ^ {1 + o(1)})$,几乎匹配静态的运行时间(草图 - 基于)解决方案。相比之下,对于精确的(甚至$ 1 / \ mathrm {poly}(n)$ - 准确性)解决方案,我们在静态和动态设置之间显示了分离,即动态LSR需要$ \ω(d ^ {2- O(1)})OMV猜想下的摊销更新时间(Henzinger等,STOC'15)。我们的数据结构在概念上简单,易于实施,并且在理论和实践中快速速度,通过对合成和现实世界数据集的实验进行了证实。
translated by 谷歌翻译
Regularising the parameter matrices of neural networks is ubiquitous in training deep models. Typical regularisation approaches suggest initialising weights using small random values, and to penalise weights to promote sparsity. However, these widely used techniques may be less effective in certain scenarios. Here, we study the Koopman autoencoder model which includes an encoder, a Koopman operator layer, and a decoder. These models have been designed and dedicated to tackle physics-related problems with interpretable dynamics and an ability to incorporate physics-related constraints. However, the majority of existing work employs standard regularisation practices. In our work, we take a step toward augmenting Koopman autoencoders with initialisation and penalty schemes tailored for physics-related settings. Specifically, we propose the "eigeninit" initialisation scheme that samples initial Koopman operators from specific eigenvalue distributions. In addition, we suggest the "eigenloss" penalty scheme that penalises the eigenvalues of the Koopman operator during training. We demonstrate the utility of these schemes on two synthetic data sets: a driven pendulum and flow past a cylinder; and two real-world problems: ocean surface temperatures and cyclone wind fields. We find on these datasets that eigenloss and eigeninit improves the convergence rate by up to a factor of 5, and that they reduce the cumulative long-term prediction error by up to a factor of 3. Such a finding points to the utility of incorporating similar schemes as an inductive bias in other physics-related deep learning approaches.
translated by 谷歌翻译
For applications that require processing large amounts of text at inference time, Large Language Models (LLMs) are handicapped by their limited context windows, which are typically 2048 tokens. In-context learning, an emergent phenomenon in LLMs in sizes above a certain parameter threshold, constitutes one significant example because it can only leverage training examples that fit into the context window. Existing efforts to address the context window limitation involve training specialized architectures, which tend to be smaller than the sizes in which in-context learning manifests due to the memory footprint of processing long texts. We present Parallel Context Windows (PCW), a method that alleviates the context window restriction for any off-the-shelf LLM without further training. The key to the approach is to carve a long context into chunks (``windows'') that fit within the architecture, restrict the attention mechanism to apply only within each window, and re-use the positional embeddings among the windows. We test the PCW approach on in-context learning with models that range in size between 750 million and 178 billion parameters, and show substantial improvements for tasks with diverse input and output spaces. Our results motivate further investigation of Parallel Context Windows as a method for applying off-the-shelf LLMs in other settings that require long text sequences.
translated by 谷歌翻译
In this paper, we view a policy or plan as a transition system over a space of information states that reflect a robot's or other observer's perspective based on limited sensing, memory, computation, and actuation. Regardless of whether policies are obtained by learning algorithms, planning algorithms, or human insight, we want to know the limits of feasibility for given robot hardware and tasks. Toward the quest to find the best policies, we establish in a general setting that minimal information transition systems (ITSs) exist up to reasonable equivalence assumptions, and are unique under some general conditions. We then apply the theory to generate new insights into several problems, including optimal sensor fusion/filtering, solving basic planning tasks, and finding minimal representations for feasible policies.
translated by 谷歌翻译
We introduce a new benchmark dataset, Placenta, for node classification in an underexplored domain: predicting microanatomical tissue structures from cell graphs in placenta histology whole slide images. This problem is uniquely challenging for graph learning for a few reasons. Cell graphs are large (>1 million nodes per image), node features are varied (64-dimensions of 11 types of cells), class labels are imbalanced (9 classes ranging from 0.21% of the data to 40.0%), and cellular communities cluster into heterogeneously distributed tissues of widely varying sizes (from 11 nodes to 44,671 nodes for a single structure). Here, we release a dataset consisting of two cell graphs from two placenta histology images totalling 2,395,747 nodes, 799,745 of which have ground truth labels. We present inductive benchmark results for 7 scalable models and show how the unique qualities of cell graphs can help drive the development of novel graph neural network architectures.
translated by 谷歌翻译
Question answering models commonly have access to two sources of "knowledge" during inference time: (1) parametric knowledge - the factual knowledge encoded in the model weights, and (2) contextual knowledge - external knowledge (e.g., a Wikipedia passage) given to the model to generate a grounded answer. Having these two sources of knowledge entangled together is a core issue for generative QA models as it is unclear whether the answer stems from the given non-parametric knowledge or not. This unclarity has implications on issues of trust, interpretability and factuality. In this work, we propose a new paradigm in which QA models are trained to disentangle the two sources of knowledge. Using counterfactual data augmentation, we introduce a model that predicts two answers for a given question: one based on given contextual knowledge and one based on parametric knowledge. Our experiments on the Natural Questions dataset show that this approach improves the performance of QA models by making them more robust to knowledge conflicts between the two knowledge sources, while generating useful disentangled answers.
translated by 谷歌翻译
The task of topical segmentation is well studied, but previous work has mostly addressed it in the context of structured, well-defined segments, such as segmentation into paragraphs, chapters, or segmenting text that originated from multiple sources. We tackle the task of segmenting running (spoken) narratives, which poses hitherto unaddressed challenges. As a test case, we address Holocaust survivor testimonies, given in English. Other than the importance of studying these testimonies for Holocaust research, we argue that they provide an interesting test case for topical segmentation, due to their unstructured surface level, relative abundance (tens of thousands of such testimonies were collected), and the relatively confined domain that they cover. We hypothesize that boundary points between segments correspond to low mutual information between the sentences proceeding and following the boundary. Based on this hypothesis, we explore a range of algorithmic approaches to the task, building on previous work on segmentation that uses generative Bayesian modeling and state-of-the-art neural machinery. Compared to manually annotated references, we find that the developed approaches show considerable improvements over previous work.
translated by 谷歌翻译
The computational complexity of the self-attention mechanism in Transformer models significantly limits their ability to generalize over long temporal durations. Memory-augmentation, or the explicit storing of past information in external memory for subsequent predictions, has become a constructive avenue for mitigating this limitation. We argue that memory-augmented Transformers can benefit substantially from considering insights from the memory literature in humans. We detail an approach for integrating evidence from the human memory system through the specification of cross-domain linking hypotheses. We then provide an empirical demonstration to evaluate the use of surprisal as a linking hypothesis, and further identify the limitations of this approach to inform future research.
translated by 谷歌翻译
个人概率是指仅实现一次的结果的概率:明天下雨的可能性,爱丽丝在未来12个月内死亡的可能性,鲍勃在未来18个月内因暴力犯罪而被捕的可能性等等。个人概率从根本上是不可知的。但是,我们表明,有两个在数据分发中的数据或如何从数据分发中进行采样的当事方不同意在如何建模个人概率上不同意。这是因为实质上不同意的任何两个模型的个人概率模型都可以用来凭经验伪造和改善两个模型之一。在“和解”过程中,这可以有效地迭代,该过程导致双方同意的模型优于他们开始的模型,并且(几乎)本身(几乎)都同意了各个概率(几乎)到处的预测。我们得出的结论是,尽管个人概率是不可知的,但它们是通过必须导致共识的计算和数据有效过程来竞争的。因此,我们无法发现自己​​有两个同样准确且不可解决的模型,这些模型在其预测中基本上不同意 - 为有时所谓的预测性或模型多样性问题提供答案。
translated by 谷歌翻译